Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 193: 110525, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33259786

RESUMO

Sediment dredging impacts coastal environments by promoting the resuspension of fine particles and remobilization of contaminants that may trigger toxic effects. In this study, we evaluated the sediment quality in harbor areas of Mucuripe bay, a semi-arid ecosystem located in Ceará state (Brazil), which is subject to dredging activities. A sampling survey was conducted right after dredging operations and data compared to another survey performed prior dredging. Sediments were analyzed for fine particles, organic carbon, nutrients, metals, hydrocarbons, and tributyltin (TBT). Toxicity of whole-sediment and liquid phase exposures were also determined. The concentrations of Cd, Cr, Cu, and Zn decreased after dredging, which was confirmed by the geoaccumulation index. Levels of TBT dropped while phosphorus, aliphatic and polycyclic aromatic hydrocarbons increased. Toxic effects persisted, indicating a post-dredging recontamination combined with other sources such as urban runoff, wastewater discharges, harbor activities, and antifouling particles. Data from Mucuripe and Pecém harbors were compiled and site-specific sediment quality values (SQVs) were developed by using multivariate methods. The threshold values proposed by our study were lower and more effective to predict toxicity compared to international guidelines, indicating levels of contamination for this tropical region in which toxic effects may occur. Considering the large geographic area with different sediment characteristics of the Brazilian coast, this study represents a significant contribution to sediment toxicity assessment of dredging activities in semi-arid environments.


Assuntos
Sedimentos Geológicos , Poluentes Químicos da Água , Brasil , Ecossistema , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
2.
Data Brief ; 31: 105889, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32637496

RESUMO

The analysis of hydrocarbons in terms of individual compounds is relevant to understand the origin and source of these substances, as well as its distribution in environmental compartments, including sediments and biota. Hydrocarbons concentrations were determined in sediments and in whole-body soft tissues of the tropical clam Anomalocardia flexuosa in sediment toxicity testing using samples of Mucuripe bay (Ceará State, NE Brazil) collected in 2011 during dredging events [1]. Data of target compounds included aliphatic (AHs) and aromatic hydrocarbons (PAHs), and linear alkylbenzenes (LABs). AHs compounds were determined on gas chromatography with flame ionization detector (GC-FID), while PAHs and LABs were determined on gas chromatography coupled to a mass spectrometer (GC/MS) in a selected ion mode (SIM). The potential of this dataset is baseline information on hydrocarbons contamination in sediments from a semi-arid region and the bioaccumulation of organic contaminants in marine organisms that can be used as models in ecotoxicological studies.

3.
Heliyon ; 6(5): e04030, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32509987

RESUMO

Few test organisms are employed for sediment toxicity assessments in Tropical regions, including Brazil. We assessed the ability of the clam Anomalocardia flexuosa to respond to contamination in sediment bioassays using dredging materials of a semi-arid region (Ceará State, NE Brazil), with attention to sublethal responses. Sediments were collected during and after dredging (survey 1 and 2, respectively) and animals exposed in laboratory over 28 days, with responses measured at 7 days. Bioaccumulation of contaminants was determined in whole-body soft tissues as a metric of bioavailability, and biomarkers' changes were monitored in terms of enzymes of phase I and II metabolism, acetylcholinesterase (AChE), and antioxidant responses, lipid peroxidation (LPO) and DNA damage (strand breaks). Clams accumulated aliphatic (AHs) and aromatic hydrocarbons (PAHs), and linear alkylbenzenes (LABs) compared to control conditions (day 0), with increased amounts of As, Cd, Cu, and Zn observed in some samples. The enzyme glutathione S-transferase was enhanced in animals exposed to samples, indicating activation of phase II metabolism. Changes observed in glutathione peroxidase (GPx), glutathione reductase (GR), LPO and strand breaks were related to oxidative stress. AChE enzymatic activity also changed, as an indicator of neurotoxicity caused by sediment exposure. The computed integrated biomarker response index (IBR) ranked sites according to the contamination status and proximity to its sources. Correlations found for biomarkers and bioaccumulation of hydrocarbons indicated the influence of harbor activities, effluent discharges, and urban runoff on the sediment pollution of Mucuripe Bay. Data also showed that SQGs are unable to predict bioaccumulation and subchronic effects. Based on our results we consider that biomarkers responses in A. flexuosa are important endpoints to be applied in sediment toxicity bioassays in tropical regions.

4.
Mar Pollut Bull ; 156: 111219, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32366367

RESUMO

Large amounts of crude oil were found along Brazil's northeast and southeast seaboard from August 2019 to January 2020. Petroleum companies and oil tankers reported no accidents previously or during this period. The stranded oil on Brazilian beaches looks like tar; it has solid aspect and is denser than seawater. Chemical characterization of this oil showed that light hydrocarbons were still present, increasing the probability of negative effects to coastal organisms and ecosystems upon release in the water column. Diagnostic ratios, chromatogram pattern, and percentage-weathering plots proved that the oil samples share the same oil source. This work provides data for future comparison with oil samples that will likely be found stranded along the Brazilian shoreline in the years to come, helping to understand long term issues associated with the mysterious oil spill that made landfall in late 2019.


Assuntos
Poluição por Petróleo , Petróleo/análise , Poluentes Químicos da Água/análise , Brasil , Ecossistema , Monitoramento Ambiental
5.
Mar Pollut Bull ; 135: 110-118, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30301007

RESUMO

Biochemical and molecular responses were evaluated in oysters Crassostrea brasiliana collected from three oyster farms, at Guaratuba Bay, southern Brazil, forming a pollutant gradient: Farm 1 (reference site - farther from the urban area), Farm 2 (intermediate site) and Farm 3 (nearest to the urban area). Oxidative stress markers, DNA damage and transcript levels of CYP2AU1, CYP2-like1, CYP2-like2, SULT-like, GPx-like, SOD-like, CAT-like, GSTmicrosomal-like, GSTomega-like, FABP-like and ALAd-like genes were analyzed in the gills. The levels of polycyclic aromatic hydrocarbons, linear alkylbenzenes and polychlorinated biphenyls were also evaluated in the soft tissues of the oysters and in the sediment of the Farms. Higher GSTomega-like, CYP2AU1 and FABP-like transcript levels, GR and G6PDH activities and lipid peroxidation levels were observed in oysters from Farms 2 and 3, suggesting pollutant effects on oysters. Alterations in oxidative stress markers also suggest a response against a prooxidant condition in C. brasiliana due to pollutant effects.


Assuntos
Aquicultura/métodos , Crassostrea/fisiologia , Biomarcadores Ambientais , Poluentes Químicos da Água/análise , Animais , Brasil , Crassostrea/química , Crassostrea/efeitos dos fármacos , Ecotoxicologia/métodos , Sedimentos Geológicos/análise , Brânquias/química , Brânquias/efeitos dos fármacos , Brânquias/fisiologia , Inativação Metabólica/efeitos dos fármacos , Inativação Metabólica/genética , Peroxidação de Lipídeos , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Bifenilos Policlorados/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Proteínas/genética
6.
Chemosphere ; 209: 307-318, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29933167

RESUMO

Exposure of aquatic organisms to polycyclic aromatic hydrocarbons (PAH), such as phenanthrene (PHE), may increase the production of reactive oxygen species (ROS) and cause changes in the biotransformation systems. In addition, changes in water temperature can cause adverse effects in the organisms. Estuarine species, like the oyster Crassostrea brasiliana, can adapt and tolerate temperature variation. To evaluate the influence of temperature on biological responses of C. brasiliana exposed to PHE, oysters were maintained at three temperatures (18, 24 and 32 °C) for 15 days and co-exposed afterwards to 100 µg.L-1 of PHE for 24 and 96 h. Levels of PHE in the water and oyster tissues were determined, respectively after 24 and 96 h. In addition, thermal stress, biotransformation and oxidative stress-related genes were analyzed in oyster gills, together with the activity of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferases (GST) and levels of lipid peroxidation. Oyster accumulated significant levels of PHE. HSP70-like transcripts were affected by PHE exposure only at 32 °C. Transcript levels of cytochrome P450 isoforms (CYP2-like2 and CYP2AU1) were down-regulated in oysters exposed to PHE for 24 h at 32 °C. GSTΩ-like transcript levels were also down-regulated in the PHE-exposed group at 32 °C. After 96 h, CYP2-like2 transcripts were higher in the PHE exposed groups at 32 °C. Oysters kept at 18 °C showed higher levels of SOD-like transcripts, together with higher GST, GPx and G6PDH activities, associated to lower levels of lipoperoxidation. In general the biological responses evaluated were more affected by temperature, than by co-exposure to PHE.


Assuntos
Crassostrea/química , Fenantrenos/efeitos adversos , Poluentes Químicos da Água/metabolismo , Animais , Temperatura
7.
Aquat Toxicol ; 191: 50-61, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28800408

RESUMO

Phenanthnere (PHE) is a polycyclic aromatic hydrocarbon continuously discarded in the marine environment and bioavailable to many aquatic species. Although studies about PHE toxicity have been documented for adult oysters, the effects on early developmental stages are poorly characterized in bivalves. In this study, the effects of PHE (0.02 and 2.0µg.L-1) were evaluated on the embryogenesis and larval development of Crassostrea gigas. Toxicity bioassays, growth and deformities assessment, analysis of shell calcium abundance and transcript levels of genes related to xenobiotic biotransformation (CYP2AU2, CYP30C1), immune system (Cg-Tal) and tissue growth and shell formation (Ferritin, Insulin-like, Cg-Try, Calmodulin and Nacrein) were assayed in D-shape larvae after 24h of PHE exposure. At the highest concentration (2.0µg.L-1), PHE decreased the frequency of normal development (19.7±2.9%) and shell size (53.5±2.8mm). Developmental deformities were mostly related to abnormal mantle and shell formation. Lower calcium levels in oyster shells exposed to PHE 2.0µg.L-1 were observed, suggesting effects on shell structure. At this same PHE concentration, CYP30C1, Cg-Tal, Cg-Tyr, Calmodulin were upregulated and CYP2AU2, Ferritin, Nacrein, and Insulin-Like were downregulated compared to control larvae. At the lowest PHE concentration (0.02µg.L-1), it was observed a minor decrease in normal larval development (89,6±6%) and the remaining parameters were not affected. This is the first study to provide evidences that exposure to PHE can affect early oyster development at the molecular and morphological levels, possibly threatening this bivalve species.


Assuntos
Crassostrea/efeitos dos fármacos , Embrião não Mamífero/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Fenantrenos/toxicidade , Poluentes Químicos da Água/toxicidade , Exoesqueleto/efeitos dos fármacos , Exoesqueleto/metabolismo , Animais , Cálcio/metabolismo , Crassostrea/embriologia , Crassostrea/genética , Embrião não Mamífero/anormalidades , Embrião não Mamífero/enzimologia , Expressão Gênica/efeitos dos fármacos , Larva , Fenantrenos/análise , Água do Mar/química , Poluentes Químicos da Água/análise
8.
Aquat Toxicol ; 183: 94-103, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28040644

RESUMO

Euryhaline animals from estuaries, such as the oyster Crassostrea brasiliana, show physiological mechanisms of adaptation to tolerate salinity changes. These ecosystems receive constant input of xenobiotics from urban areas, including polycyclic aromatic hydrocarbons (PAHs), such as phenanthrene (PHE). In order to understand the influence of salinity on the molecular responses of C. brasiliana exposed to PHE, oysters were acclimatized to different salinities (35, 25 and 10) for 15days and then exposed to 100µgL-1 PHE for 24h and 96h. Control groups were kept at the same salinities without PHE. Oysters were sampled for chemical analysis and the gills were excised for mRNA quantification by qPCR. Transcript levels of different genes were measured, including some involved in oxidative stress pathways, phases I and II of the xenobiotic biotransformation systems, amino acid metabolism, fatty acid metabolism and aryl hydrocarbon receptor nuclear translocator putative gene. Higher transcript levels of Sulfotransferase-like gene (SULT-like) were observed in oysters exposed to PHE at salinity 10 compared to control (24h and 96h); cytochrome P450 isoforms (CYP2AU1, CYP2-like1) were more elevated in oysters exposed for 24h and CYP2-like2 after 96h of oysters exposed to PHE at salinity 10 compared to control. These results are probably associated to an enhanced Phase I biotransformation activity required for PHE detoxification under hyposmotic stress. Higher transcript levels of CAT-like, SOD-like, GSTm-like (96h) and GSTΩ-like (24h) in oysters kept at salinity 10 compared to organisms at salinities 25 and/or 35 are possibly related to enhaced ROS production. The transcription of these genes were not affected by PHE exposure. Amino acid metabolism-related genes (GAD-like (24h), GLYT-like, ARG-like (96h) and TAUT-like at 24h and 96h) also showed different transcription levels among organisms exposed to different salinities, suggesting their important role for oyster salinity adaptation, which is not affected by exposure to these levels of PHE.


Assuntos
Crassostrea/efeitos dos fármacos , Fenantrenos/toxicidade , Salinidade , Poluentes Químicos da Água/toxicidade , Animais , Biotransformação , Crassostrea/genética , Sistema Enzimático do Citocromo P-450/genética , Estuários , Brânquias/efeitos dos fármacos , Brânquias/metabolismo , Transcrição Gênica/efeitos dos fármacos , Xenobióticos/metabolismo
9.
Aquat Toxicol ; 177: 146-55, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27286572

RESUMO

Understanding the mechanism of phenanthrene (PHE) biotransformation and related cellular responses in bivalves can be an important tool to elucidate the risks of polycyclic aromatic hydrocarbons (PAHs) to aquatic organisms. In the present study it was analyzed the transcriptional levels of 13 biotransformation genes related to cytochrome P450 (CYP), glutathione S-transferase (GST), sulfotransferase (SULT), flavin-containing monooxygenase and fatty acid-binding proteins by qPCR in gill of scallops Nodipecten nodosus exposed for 24 or 96h to 50 or 200µgL(-1) PHE (equivalent to 0.28 and 1.12µM, respectively), followed by depuration in clean water for 96h (DEP). Likewise, it was quantified the activity of catalase (CAT), glutathione peroxidase (GPx), superoxide dismutase (SOD), glutathione reductase (GR), glucose 6-phosphate dehydrogenase (G6PDH), GST and levels of lipid peroxidation. Increased transcriptional levels of CYP2UI-like, CYP2D20-like, CYP3A11-like, GSTomega-like, SULT1B1-like genes were detected in organisms exposed to PHE for 24 or 96h. In parallel, GR and GPX activities increased after 96h exposure to 200µgL(-1) PHE and G6PDH activity increased after 24h exposure to 50µgL(-1) PHE. This enhancement of antioxidant and phase I and II biotransformation systems may be related to the 2.7 and 12.5 fold increases in PHE bioaccumulation after 96h exposure to 50 and 200µgL(-1) PHE, respectively. Interestingly, DEP caused reestablishment of GPX and GR activity, as well as to the transcript levels of all upregulated biotransformation genes (except for SULT1B1-like). Bioaccumulated PHE levels decreased 2.5-2.9 fold after depuration, although some biochemical and molecular modifications were still present. Lipid peroxidation levels remained lower in animals exposed to 200µgL(-1) PHE for 24h and DEP. These data indicate that N. nodosus is able to induce an antioxidant and biotransformation-related response to PHE exposure, counteracting its toxicity, and DEP can be an effective protocol for bivalve depuration after PHE exposure.


Assuntos
Brânquias/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Pectinidae/efeitos dos fármacos , Fenantrenos/toxicidade , Transcrição Gênica/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Biomarcadores/metabolismo , Biotransformação/efeitos dos fármacos , Biotransformação/genética , Relação Dose-Resposta a Droga , Brânquias/metabolismo , Peroxidação de Lipídeos/genética , Pectinidae/genética , Pectinidae/metabolismo , Fenantrenos/metabolismo , Testes de Toxicidade , Poluentes Químicos da Água/metabolismo
10.
Int J Food Microbiol ; 167(3): 337-45, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24184612

RESUMO

AIMS: (1) Evaluate the dynamic of the depuration process of Crassostrea gigas oysters using different ultraviolet doses with different amounts of contaminants (virus, protozoa and organic contaminants) and (2) investigate the morphological changes in the oysters' tissues produced by the depuration procedures. METHODS: The oysters were allocated in sites with different degrees of contamination and analyzed after 14 days. Some animals were used as positive controls by artificial bioaccumulation with HAdV2 and MNV1 and subjected to depuration assays using UV lamps (18 or 36 W) for 168 h. The following pollutants were researched in the naturally contaminated oysters, oysters after 14 days in sites and oysters during the depuration processes: virus (HAdV, HAV, HuNoV GI/GII and JCPyV), by (RT) qPCR; protozoa (Cryptosporidium and Giardia species), by immunomagnetic separation and immunofluorescence; and organic compounds (AHs, PAHs, LABs, PCBs and organochlorine pesticides-OCs), by chromatography. Changes in the oysters' tissues produced by the depuration processes were also evaluated using histochemical analysis by light microscopy. In the artificially bioaccumulated oysters, only HAdV2 and MNV1 were investigated by (RT) qPCR before the depuration procedures and after 96 and 168 h of these procedures. RESULTS: At 14 days post-allocation, HAdV was found in all the sites (6.2 × 105 to 4.4 × 107 GC g(-1)), and Giardia species in only one site. Levels of PCBs and OCs in the oyster's tissues were below the detection limit for all samples. AHs (3.5 to 4.4 µg g(-1)), PAHs (11 to 191 ng g(-1)) and LABs (57 to 751 ng g(-1)) were detected in the samples from 3 sites. During the depuration assays, we found HAdV, Giardia and Cryptosporidium species until 168 h, independent of UV treatment. AHs, PAHs and LABs were found also after 168 h of depuration (36 W and without UV lamp). The depuration procedures did not produce changes in the oysters' tissues. In the artificially contaminated and depurated oysters, we detected HAdV until 168 h and MNV1 until 96 h of depuration. CONCLUSION: The applied depuration treatments were unable to eliminate the protozoa or to degrade the HAdV genomes but were able to degrade the MNV1 genomes. Similarly, the UV water treatment was not efficient for aliphatic hydrocarbons, PAHs and LABs, as their concentrations were equivalent or higher to the concentrations of the control samples and samples from depuration tanks without UV treatment.


Assuntos
Cryptosporidium/efeitos da radiação , Giardia/efeitos da radiação , Compostos Orgânicos/efeitos da radiação , Ostreidae , Raios Ultravioleta , Vírus/efeitos da radiação , Animais , Sistema Digestório/efeitos da radiação , Contaminação de Alimentos/prevenção & controle , Brânquias/efeitos da radiação , Compostos Orgânicos/análise , Ostreidae/química , Ostreidae/parasitologia , Ostreidae/efeitos da radiação , Ostreidae/virologia , Fenômenos Fisiológicos Virais/efeitos da radiação , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Poluentes Químicos da Água/efeitos da radiação
11.
Ecotoxicol Environ Saf ; 76(2): 153-61, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22036209

RESUMO

Florianópolis, a city located in the Santa Catarina State in southern Brazil, is the national leading producer of bivalve mollusks. The quality of bivalve mollusks is closely related to the sanitary conditions of surrounding waters where they are cultivated. Presently, cultivation areas receive large amounts of effluents derived mainly from treated and non-treated domestic, rural, and urban sewage. This contributes to the contamination of mollusks with trace metals, pesticides, other organic compounds, and human pathogens such as viruses, bacteria, and protozoan. The aim of this study was to perform a thorough diagnosis of the shellfish growing areas in Florianópolis, on the coast of Santa Catarina. The contamination levels of seawater, sediments, and oysters were evaluated for their microbiological, biochemical, and chemical parameters at five sea sites in Florianópolis, namely three regular oyster cultivation areas (Sites 1, 2, and oyster supplier), a polluted site (Site 3), and a heavily polluted site (Site 4). Samples were evaluated at day zero and after 14 days. Seawater and sediment samples were collected just once, at the end of the experiment. Antioxidant defenses, which may occur in contaminated environments in response to the increased production of reactive oxygen species (ROS) by organisms, were analyzed in oysters, as well as organic compounds (in oysters and sediment samples) and microbiological contamination (in oysters and seawater samples). The results showed the presence of the following contaminants: fecal coliforms in seawater samples (four sites), human adenovirus (all sites), human noroviruses GI and GII (two sites), Hepatitis A viruses (one site), JC Polyomavirus in an oyster sample from the oyster supplier, Giardia duodenalis cysts, and Cryptosporidium sp oocysts (one site). Among organochlorine pesticides, only DDT (dichlorodiphenyltrichloroethane) and HCH (hexachlorocyclohexane) were detected in some sediment and oysters samples in very low levels; site 4 had the highest concentrations of total aliphatic hydrocarbons, PAHs, and linear alkylbenzenes (LABs) found either in oysters or in sediment samples. The major concentration of fecal sterol coprostanol was found at site 4, followed by site 3. After 14 days of allocation in the four selected sites, there was a significant difference in the enzymes analyzed at the monitored spots. The detection of different contaminants in oysters, seawater, and sediment samples in the present study shows the impact untreated or inadequately treated effluents have on coastal areas. These results highlight the need for public investment in adequate wastewater treatment and adequate treatment of oysters, ensuring safe areas for shellfish production as well as healthier bivalve mollusks for consumption.


Assuntos
Monitoramento Ambiental/métodos , Moluscos/metabolismo , Poluentes Químicos da Água/análise , Poluição da Água/estatística & dados numéricos , Animais , Brasil , Substâncias Perigosas/análise , Substâncias Perigosas/metabolismo , Humanos , Invertebrados/metabolismo , Metais/análise , Metais/química , Metais/metabolismo , Norovirus/isolamento & purificação , Compostos Orgânicos/análise , Compostos Orgânicos/química , Compostos Orgânicos/metabolismo , Ostreidae/microbiologia , Ostreidae/virologia , Praguicidas/análise , Praguicidas/química , Praguicidas/metabolismo , Água do Mar/química , Água do Mar/microbiologia , Água do Mar/virologia , Esgotos/análise , Microbiologia da Água , Poluentes Químicos da Água/química , Poluentes Químicos da Água/metabolismo , Poluição da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...